和\(FFT\)相对应的,把单位根换成了原根,把共轭复数换成了原根的逆元,最后输出的时候记得乘以原\(N\)的逆元即可.
#includeusing namespace std;#define LL long long const int MAXN = 3 * 1e6 + 10, P = 998244353, G = 3; LL a[MAXN], b[MAXN];int N, M, limit = 1, L, r[MAXN], Gi;inline LL fastpow(LL a, LL k) { LL base = 1; while(k) { if(k & 1) base = (base * a ) % P; a = (a * a) % P; k >>= 1; } return base % P;}inline void NTT(LL *A, int type) { for (int i = 0; i < limit; i++) { if(i < r[i]) swap(A[i], A[r[i]]); } for (int mid = 1; mid < limit; mid <<= 1) { LL Wn = fastpow (type == 1 ? G : Gi , (P - 1) / (mid << 1)); for(int j = 0; j < limit; j += (mid << 1)) { LL w = 1; for (int k = 0; k < mid; k++, w = (w * Wn) % P) { int x = A[j + k], y = (w * A[j + k + mid]) % P; A[j + k] = (x + y) % P; A[j + k + mid] = (x - y + P) % P; } } }}int main () { Gi = fastpow (G, P - 2); cin >> N >> M; for (int i = 0; i <= N; i++) {cin >> a[i]; a[i] = (a[i] + P) % P;} for (int i = 0; i <= M; i++) {cin >> b[i]; b[i] = (b[i] + P) % P;} while (limit <= N + M) limit <<= 1, L++; for (int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1)); NTT (a, 1); NTT (b, 1); for (int i = 0; i < limit; i++) a[i] = (a[i] * b[i]) % P; NTT (a, -1); LL inv = fastpow (limit, P - 2); for (int i = 0; i <= N + M; i++) { printf ("%d ", (a[i] * inv) % P); } return 0;}